3.22.76 \(\int \frac {\sqrt {1-2 x}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=84 \[ \frac {3 (1-2 x)^{3/2}}{7 (3 x+2) \sqrt {5 x+3}}-\frac {103 \sqrt {1-2 x}}{7 \sqrt {5 x+3}}+\frac {103 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{\sqrt {7}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {96, 94, 93, 204} \begin {gather*} \frac {3 (1-2 x)^{3/2}}{7 (3 x+2) \sqrt {5 x+3}}-\frac {103 \sqrt {1-2 x}}{7 \sqrt {5 x+3}}+\frac {103 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{\sqrt {7}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 2*x]/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

(-103*Sqrt[1 - 2*x])/(7*Sqrt[3 + 5*x]) + (3*(1 - 2*x)^(3/2))/(7*(2 + 3*x)*Sqrt[3 + 5*x]) + (103*ArcTan[Sqrt[1
- 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/Sqrt[7]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx &=\frac {3 (1-2 x)^{3/2}}{7 (2+3 x) \sqrt {3+5 x}}+\frac {103}{14} \int \frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac {103 \sqrt {1-2 x}}{7 \sqrt {3+5 x}}+\frac {3 (1-2 x)^{3/2}}{7 (2+3 x) \sqrt {3+5 x}}-\frac {103}{2} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=-\frac {103 \sqrt {1-2 x}}{7 \sqrt {3+5 x}}+\frac {3 (1-2 x)^{3/2}}{7 (2+3 x) \sqrt {3+5 x}}-103 \operatorname {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=-\frac {103 \sqrt {1-2 x}}{7 \sqrt {3+5 x}}+\frac {3 (1-2 x)^{3/2}}{7 (2+3 x) \sqrt {3+5 x}}+\frac {103 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{\sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 65, normalized size = 0.77 \begin {gather*} \frac {103 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{\sqrt {7}}-\frac {\sqrt {1-2 x} (45 x+29)}{(3 x+2) \sqrt {5 x+3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 2*x]/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

-((Sqrt[1 - 2*x]*(29 + 45*x))/((2 + 3*x)*Sqrt[3 + 5*x])) + (103*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])
/Sqrt[7]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.13, size = 86, normalized size = 1.02 \begin {gather*} \frac {103 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{\sqrt {7}}-\frac {\sqrt {1-2 x} \left (\frac {10 (1-2 x)}{5 x+3}+103\right )}{\sqrt {5 x+3} \left (\frac {1-2 x}{5 x+3}+7\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[1 - 2*x]/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

-((Sqrt[1 - 2*x]*(103 + (10*(1 - 2*x))/(3 + 5*x)))/(Sqrt[3 + 5*x]*(7 + (1 - 2*x)/(3 + 5*x)))) + (103*ArcTan[Sq
rt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/Sqrt[7]

________________________________________________________________________________________

fricas [A]  time = 1.40, size = 86, normalized size = 1.02 \begin {gather*} \frac {103 \, \sqrt {7} {\left (15 \, x^{2} + 19 \, x + 6\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (45 \, x + 29\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (15 \, x^{2} + 19 \, x + 6\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/14*(103*sqrt(7)*(15*x^2 + 19*x + 6)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x
 - 3)) - 14*(45*x + 29)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(15*x^2 + 19*x + 6)

________________________________________________________________________________________

giac [B]  time = 1.67, size = 257, normalized size = 3.06 \begin {gather*} -\frac {1}{140} \, \sqrt {5} {\left (103 \, \sqrt {70} \sqrt {2} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + 70 \, \sqrt {2} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )} + \frac {9240 \, \sqrt {2} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{{\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

-1/140*sqrt(5)*(103*sqrt(70)*sqrt(2)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) -
sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 70*sqrt(2)*((sqrt(2)*sqrt(-10*x + 5) - sqr
t(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) + 9240*sqrt(2)*((sqrt(2)*sqrt(-10
*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*
x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280))

________________________________________________________________________________________

maple [B]  time = 0.01, size = 154, normalized size = 1.83 \begin {gather*} -\frac {\left (1545 \sqrt {7}\, x^{2} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+1957 \sqrt {7}\, x \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+630 \sqrt {-10 x^{2}-x +3}\, x +618 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+406 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {-2 x +1}}{14 \left (3 x +2\right ) \sqrt {-10 x^{2}-x +3}\, \sqrt {5 x +3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x+1)^(1/2)/(3*x+2)^2/(5*x+3)^(3/2),x)

[Out]

-1/14*(1545*7^(1/2)*x^2*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+1957*7^(1/2)*x*arctan(1/14*(37*x+20
)*7^(1/2)/(-10*x^2-x+3)^(1/2))+618*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+630*(-10*x^2-x+3
)^(1/2)*x+406*(-10*x^2-x+3)^(1/2))*(-2*x+1)^(1/2)/(3*x+2)/(-10*x^2-x+3)^(1/2)/(5*x+3)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.37, size = 92, normalized size = 1.10 \begin {gather*} -\frac {103}{14} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {30 \, x}{\sqrt {-10 \, x^{2} - x + 3}} - \frac {47}{3 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {7}{3 \, {\left (3 \, \sqrt {-10 \, x^{2} - x + 3} x + 2 \, \sqrt {-10 \, x^{2} - x + 3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

-103/14*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 30*x/sqrt(-10*x^2 - x + 3) - 47/3/sqrt(-10
*x^2 - x + 3) + 7/3/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {1-2\,x}}{{\left (3\,x+2\right )}^2\,{\left (5\,x+3\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(1/2)/((3*x + 2)^2*(5*x + 3)^(3/2)),x)

[Out]

int((1 - 2*x)^(1/2)/((3*x + 2)^2*(5*x + 3)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {1 - 2 x}}{\left (3 x + 2\right )^{2} \left (5 x + 3\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)/(2+3*x)**2/(3+5*x)**(3/2),x)

[Out]

Integral(sqrt(1 - 2*x)/((3*x + 2)**2*(5*x + 3)**(3/2)), x)

________________________________________________________________________________________